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A problem to determine the t empera tu re  dependence of the coefficient of heat conduction is 
formulated on the basis  of an analysis  of the internal t empera tu re  field. A sea rch  method 
permit t ing solution of the problem mentioned is proposed.  

There  is a large quantity of work devoted to the investigation of methodological questions associa ted  
with the determinat ion of the thermophys ica l  charac te r i s t i c s  of mater ia ls  at high t empera tu res  at this 
t ime.  As a rule,  methods based on using exact and approximate solutions of a nonlinear heat-conduct ion 
equation for par t icu lar  cases  a re  examined in these papers .  The prac t ica l  util ization of the mentioned 
methods is related to the rea l iza t ion  of s ta t ionary heating of the spec imen of mater ia l  under investigation, 
monotonic heating [1], instantaneous or intensive heating to a given t empera tu re  [2, 3], which is quite 
tedious and somet imes  even unreal izable  under laboratory conditions in prac t ice .  In this connection, 
methods to determine the thermophys ica l  charac te r i s t i cs  [4-6], based on an analysis  of the t empera tu re  
fields within the mater ia l  under invest igation by numerical  solution of the inverse  problem of nonlinear 
heat conduction, which requi re  no special  conditions for conducting the experiment ,  become quite valuable. 
A method is elucidated below for the determinat ion of the coefficient of heat conduction as a function of the 
t empera tu re ,  on the basis  of a numerica l  solution of the inverse  problem of heat conduction using a r e -  
fined difference scheme and a special  d i rect  sea rch  method. An example of the use of the proposed method 
on the basis  of a numerical  experiment  is presented.  

The problem of determining the thermophysica l  cha rac te r i s t i c s  by means of experimental ly  mea-  
sured t empera tu re  fields can be formulated as follows: The hea t -propagat ion  process  is descr ibed by 
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Fig. 1. Time change in the t empera tu re :  1) u(o, t); 
2) u(1/2, t); 3) u(1, t). 

Fig. 2. Compar i son  with the exact solution. 1) Exact 
solution; a) obtained solution, l inear interpolation; 
b) obtained solution, quadratic interpolation; the 
dashes denote the f i rs t  approximation.  
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the nonlinear  equation of heat  conduction 

a ;~ (u) au au a-x- O < x < 6 ,  

The t ime  change in the t e m p e r a t u r e  fig;) is known (as a r e su l t  of m e a -  
s u r e m e n t s  during the exper iment )  at s e v e r a l  in ternal  points xi, i = 1, 
2 . . . . .  n; 0 <- xi -< 5. It is r equ i red  to de t e rmine  the unknown func- 
t ion h (u) f r o m  the condition of the min imum of the functional 

) -  /1 

J =  f t)l'dt (2) 
0 1 

or  

T n 
J= S Z [ [~(O--u(x~t) ] 2 ~i ~[ ~ dr. (2') 

0 1 

where  u(x i, t) is the t e m p e r a t u r e  change at  the point x i computed by 
means  of (1). The init ial  and boundary  conditions needed to solve (1) 
should be given.  The t e m p e r a t u r e  changes measu red  at the e x t r e m e  
points or  the t rue  conditions of the exper imen t  can be used as  boundary 
conditions if  n -> 3. The p rocedure  for  solving the p rob l em is to a s s ign  
the f o r m  of the function h (u) a p r io r i ,  to de t e rmine  those var ia t ions  
6 h (u) which diminish the value of the functional (2), ancl to v a r y  h (u) 
in this d i rec t ion  until ruing is obtained. The values of the functional 
a r e  de te rmined  by numer ica l  solution of the d i rec t  p rob lem,  i . e . ,  Eq. 
(1) for  a se lec ted  1\ (u). An impl ic i t  conserva t ive  d i f fe rence  scheme  
r e c o m m e n d e d  in [7] was used to  solve the d i rec t  p rob lem.  However ,  
the supp lemen ta ry  coeff icients  e ~ ,  ~]k 1 

were  in t roduced to i nc rease  the accuracy  i n  the app rox ima t i ng  d i f f e r -  
ence e x p r e s s i o n s  for  the  de r i va t i ve s  8u /0x  and 02u/Ox2: The  s u b s c r i p t  
k r e f e r s  t o  the  pa r t i t i on  in  x, and j r e f e r s  to  t .  The  coeff ic ients  ~j~l 

and #j~l a r e  d e t e r m i n e d  by means  of the  t e m p e r a t u r e  va lues  at  points  

of the mesh  domain  and a r e  the r a t i o  between the f i r s t -  and second-  

o rde r  de r iva t ives  de te rmined  at five points by means  of the Lagrange  
fo rmulas  [8] and the cor responding  der iva t ives  de te rmined  at two 
points for  the f i r s t ,  and at  t h ree  points for  the second, de r iva t ives .  
An ana lys i s  o f  the computat ions made showed that  introduction of the 
coeff icients  mentioned is most  effect ive for  the case  of la rge  t e m p e r a -  
t u r e  g rad ien t s .  Given in  Table  1 is  a c o m p a r i s o n  between the r e su l t s  
of numer i ca l  computat ions using an  ord inary  d i f ference  scheme  (~j~l = 
1, #]~i :_ 1) and us ing  the p r o p o s e d  s c h e m e  (~j~t ~ 1, #j~t ~ 1) with 
the  exac t  q u a s i s t a t i o n a r y  so lu t ion  ~ r  of the  p r o b l e m  with a moving 
b o tmdary  [9]. 

A spec ia l ly  developed s e a r c h  method is used to  solve  the  p r o b -  
l e m  of min imiz ing  the funct ional  (2). The  c r u x  of the  method is the  
fol lowing.  The  whole r ange  of t e m p e r a t u r e  v a r i a t i o n  is pa r t i t ioned  
in to  m p a r t s  by the  points  Umi n = u 1 < u 2 < . . .  < Um = Uma x. The  
va lues  of the d e s i r e d  funct ion h (ui) = hi a r e  to  be  d e t e r m i n e d .  It is  
a s s u m e d  that  the law of v a r i a t i o n  of h be tween  the nodal points  is g iven.  
L inea r  in t e rpo la t ion  be tween  two ad jacen t  nodes and pa rabo l i c  i n t e r -  
po la t ion  be tween  t h r e e  nodes a r e  u sed .  T a k e n  as  the f i r s t  a p p r o x i m a -  
t i on  to  the  so lu t ion  of the  in i t ia l  p r o b l e m  is h (u) = h (1) : cons t .  The  
s e a r c h  is a c c o m p l i s h e d  as  fol lows.  T h r e e  cons tan t  va lues  ~1 < -h2 < -h3 
a r e  se l ec t ed  such  that  t he i r  c o r r e s p o n d i n g  va lues  of the qual i ty  c r i t e r i o n  

886 



(2) would sa t i s fy  the inequali ty 

Assuming  the dependence J(:~) in the neighborhood can be r e p r e s e n t e d  by a parabola ,  we find ~1 < s < ;~3 
which yields  ;~0 (1) in the neighborhood mentioned.  Then, an analogous p rocedu re  is r epea ted  in a s m a l l e r  
neighborhood of the point minJ(A)  and so  on until s (i) is obtained with a g iven accu racy .  The s u c c e s s i v e  
approx imat ions  a r e  de te rmined  as fol lows.  Let the (k--  1)-th approximat ion ,  i . e . ,  s s . . . . .  
;~ (k-l), be  known. To de t e rmine  the k - th  approximat ion ,  a ce r t a in  inc remen t  d;~ = ;~ (~)/q (q is the sca le)  
is  smelected and the next i n c r e m e n t s  of al l  the s s t a r t ing  with i = 0, a r e  given succe s s ive ly :  

1 

1. L}k) = L[k-,) • dL, 2. ;~[k) =:;~i~-,) 4-_ d~./2, 3. ~}k) = L~k-l) . 

The value which yields  the min ima l  value of the quality c r i t e r i on  (2) 

j(~k> .. Xlk~, ~(~_,) . . . .  , . , ~+~  , x ~ - ' > )  

is se lec ted  as hi (k)- . The mentioned p rocedu re  is repea ted  until it tu rns  out that  ]~i (k) = s (k-i) a f t e r  which 
the sca le  q is inc reased  and the next approx imat ions  a r e  de te rmined .  The s e a r c h  is cons idered  t e r m i n -  
a ted if the sca le  becom es  g r e a t e r  than a g iven m a x i m u m  quantity.  

P re sen t ed  below as an i l lus t ra t ion  of the proposed method is an example  based  on a numer i ca l  ex-  
p e r i m e n t .  Shown in d imens ion les s  f o r m  in Fig.  1 is the t ime  change in the t e m p e r a t u r e  at  the points x = 
0, x = 1/2,  x = 1. The t e m p e r a t u r e  change a t  the point x = 1/2  has been  obtained by numer i ca l  solution of 
(1) for  the case  

u(x ,  0 ) = 0 ;  n(0, t ) = t ;  u(l,  l ) = 0 ;  c ? = l ;  

~. (u) = sin (6u -k 0.4) § 1.5. 

The r e su l t s  of solving the p r o b l e m  when using the c r i t e r ion  in the f o r m  (2') a r e  shown in Fig. 2. 

N O T A T I O N  

c, speci f ic  heat;  f, t e m p e r a t u r e  at an in terna l  point; J, functional; m, number  of par t i t ions  in u; 
n, number  of t e m p e r a t u r e  m e a s u r e m e n t s ;  q, sca le ;  t ,  t ime ;  u, t e m p e r a t u r e ;  ~T, exact  solution; x, 
l inear  coordinate ;  ~,  co r r ec t i on  coefficient  for  the f i r s t  der iva t ive ;  fi, c o r r e c t i o n  coefficient  for  the 
second der iva t ive ;  7,  speci f ic  g rav i ty ;  5, th ickness ;  ]t, coefficient  of heat  conduction; -A, constant  
value of ;,. Subscr ip t s :  i r e f e r s  to par t i t ion  in u; j r e f e r s  to par t i t ion  in t; k r e f e r s  to  par t i t ion  in x; 
(k) r e f e r s  to  an approx imat ion .  
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